Calculations Involving Solubility Product

Given a dissociation equation, a solubility product expression can be written by setting the mass-action expression (the product of the solubilities of ions, raised to appropriate powers) equal to the solubility product constant, $K_{\rm sp}$. Such expressions allow calculation of equilibrium concentrations, prediction of precipitation, or calculation of $K_{\rm sp}$, if it is not already known.

Solve the following problems. Show your work.

- 1. The equilibrium concentrations of Ag^+ and Br^- ions are both 7.1×10^{-7} M. Write the balanced dissociation equation and the solubility product for AgBr, and calculate $K_{\rm sp}$.
- 1.

- The value of $K_{\rm sp}$ for CdS is 1.0×10^{-28} . Write the balanced dissociation equation and the solubility product for CdS, and calculate the equilibrium concentrations of Cd²⁺ and S²⁻.
- 2.

- 3. A solution contains CO_3^{2-} ions and Ba^{2+} ions in equilibrium. $K_{\rm sp}$ for $BaCO_3$ equals 2×10^{-9} , and $[CO_3^{2-}]$ equals 1.0×10^{-2} M. Calculate $[Ba^{2+}]$. (First, write the balanced equation and solubility product expression.)
- 3.